Особенности dc тока

Содержание

Несколько советов по выбору розеток УЗО и АВ

Действующее значение переменного синусоидального тока

Общее понятие о переменном токе

Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.

Переменный ток — величина алгебраическая, знак его определяется тем, в каком направлении в рассматриваемый момент времени протекает ток в цепи — в положительном или отрицательном.

Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока.

Максимальное мгновенное значение переменного тока, которое он достигает в процессе своего изменения, называется амплитудой тока Im{\displaystyle I_{m}}.

График зависимости переменного тока от времени называется развёрнутой диаграммой переменного тока.

Развёрнутая диаграмма переменного синусоидального тока

На рисунке приведена развёрнутая диаграмма переменного тока, изменяющегося с течением времени по величине и направлению. На горизонтальной оси t{\displaystyle 0t} отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки {\displaystyle 0} — положительные, вниз — отрицательные. Часть развёрнутой диаграммы тока, расположенная выше оси времени t{\displaystyle 0t}, характеризует изменение положительных величин во времени, а часть, расположенная ниже оси времени t{\displaystyle 0t}, — изменение отрицательных величин.

В начальный момент времени t={\displaystyle t=0} ток равен нулю (i=){\displaystyle (i=0)}. Затем он с течением времени растёт в положительном направлении, в момент времени t=T4{\displaystyle t={\frac {T}{4}}} достигает максимального значения, после чего убывает по величине и в момент времени t=T2{\displaystyle t={\frac {T}{2}}} становится равным нулю. Затем, пройдя через нулевое значение, ток меняет свой знак на противоположный, то есть становится отрицательным, затем растёт по абсолютной величине, затем достигает максимума при t=34T{\displaystyle t={\frac {3}{4}}T}, после чего убывает и при t=T{\displaystyle t=T} становится равным нулю.

Виды и параметры розеток

Генерация и трансформация

Принцип генерации электричества прост. Если магнитное поле вращается вдоль стационарного набора катушек из витков проводника или, наоборот, катушка вращается вокруг стационарного магнитного поля, то благодаря явлению электромагнитной индукции на концах обмоток возникает разность потенциалов. С каждым изменением угла поворота в результате описанного кругового движения выходное напряжение также будет меняться как по величине, так и по направлению.

Описанный условный генератор при постоянной угловой скорости вращения вала производит синусоидальный AC с формой волны, ничем не отличающейся от поставляемого в бытовой сети. Реальные генераторы устроены значительно сложнее, но работают на том же принципах электромагнитной индукции.

Эти же законы помогают не только в производстве AC, но и в его передаче и распределении. Преобразования напряжения энергетическим компаниями невозможно осуществить без электрических машин, называемых трансформаторами

Вот почему это изобретение Теслы было так важно для революции в транспортировке электричества

Любой трансформатор состоит из следующих элементов:

  • первичной и вторичных обмоток;
  • сердечника.

Слово «первичная» применяется для обмотки, на которую подаётся электрическое напряжение, нуждающееся в трансформации. Индуцированное напряжение на вторичной катушке всегда равно приложенному на первичной, умноженному на соотношение витков вторичной к первичной. Трансформатор позволяет пошагово изменять напряжение.

Ранние AC/DC так отжигали, что у всей группы был триппер (если верить Бону Скотту).

Разумеется, High Voltage был успешным альбомом. Еще до него, с одними каверами в запасе AC/DC уже были звездами в Австралии. Выпуск дебютника лишь закрепил их статус. Жили они, само собой, как и положено рок-звездам. 

Вскоре после релиза High Voltage музыканты группы — а их тогда было пятеро — переехали в Мельбурн и жили вместе в одном доме. Позже Бон Скотт рассказывал, что вместе с ними постоянно тусовалось порядка двадцати девушек, которые с удовольствием «обслуживали» музыкантов. Он же утверждал, что именно из-за этого у всей группы был триппер и об этом Бон даже написал песню — The Jack. Причем предложил идею Малькольм. Написали песню всего за один день и уже вечером сыграли ее для «домашней» публики. Во время исполнения на фразе «She’s got the Jack»  Бон показывал на конкретных девушек, что их, конечно, обидело. Но группе было весело. Jack было сленговым словечком для триппера, видимо, это отсылка к персонажу Джеку Трипперу из ситкома «Трое — это компания».

А еще позже Скотт написал песню про лобковых вшей, которых группа обнаружила в своей машине — Crabsody In Blue. В итоге, как говорят, группа даже устраивала коллективный поход в клинику, но официально это никто не подтверждал. Да и вообще музыканты потом, как это принято, все валили на своих роуди. Дескать, это они были развратники, а вовсе не AC/DC. Учитывая, что добрая половина песен Бона Скотта посвящена его секс-приключениям, охотно верим!

https://youtube.com/watch?v=hgVScdkUtWI

А как быть если старого адаптера нет?

Элементы платы

AC/DC преобразователь

AC/DC преобразователь модели , предназначен для преобразования переменного напряжения питающей сети 220 вольт в постоянное напряжение 5 вольт.

Реле

На AC/DC (Zelo-модуль) установлено электромеханическое реле, имеющее нормально замкнутый (normal closed, NC) и нормально разомкнутый (normal open, NO) контакты. Если на управляющей обмотке реле отсутствует напряжение, то между нормально замкнутым и коммутируемым контактами есть электрическая связь, а между нормально разомкнутым и коммутируемым — нет. При подаче напряжения на управляющую обмотку нормально разомкнутый контакт замыкается, а нормально замкнутый — размыкается.

Входной разъём питания

AC/DC (Zelo-модуль) питается через клеммник входного напряжение .

  • — подключите к фазе бытовой сети.
  • — подключите к нулю бытовой сети.
  • — подключите к земле бытовой сети.

Если вы не знаете, где в вашей сети фаза и ноль, ничего страшного. Провода и можно менять местами.
Через данный клеммник входное напряжение поступает на AC/DC преобразователь и коммутирующие контакты реле.

Разъём подключения нагрузки

Провода нагрузки подключаются через выходной клеммник . Один провод нагрузки подключается к выводу , а второй — к контакту или , в зависимости от задачи которую должно выполнять реле. Чаще всего реле используется для замыкания внешней цепи при подаче напряжения на управляющую обмотку. При таком способе даже если напряжение на управляющей плате по какой-то причине пропадёт, управляемая нагрузка будет автоматически отключена.

  • — контакт, подключённый к питающей сети от входного клеммника. Подключите к одному из проводов нагрузки.
  • — нормально разомкнутый (normal open, NO) вывод реле. Подключите ко второму проводу нагрузки, если устройство должно включатся при высоком уровне на управляющей обмотке реле.
  • — нормально замкнутый (normal closed, NC) вывод реле. Подключите ко второму проводу нагрузки, если устройство должно включатся при низком уровне на управляющей обмотке реле.
  • — подключите к земле бытовой сети.

Выходной разъём преобразователя питания

Выход с преобразователя питания с напряжением 5 вольт подключены к винтовому разъёму:

  • — питания с преобразователя. Подключите к питанию управляющей платы.
  • — земля с преобразователя. Подключите к земле управляющей платы.

Troyka-контакты

Реле подключается к управляющей электронике по трём проводам.
Назначение контактов 3-проводного шлейфа:

  • Питание () — красный провод. На него должно подаваться напряжение 3,3–5 В.
  • Земля () — чёрный провод. Должен быть соединён с землёй микроконтроллера.
  • Сигнальный () — жёлтый провод. Через него происходит управление реле.

При появлении логической единицы на сигнальном контакте реле срабатывает. При этом напряжение логической единицы может быть как 5 В, так и 3,3 В. При срабатывании реле нормально замкнутый контакт размыкается, а нормально разомкнутый — замыкается. При подаче на сигнальный контакт логического нуля или при исчезновении напряжения реле возвращается в нормальное положение: нормально замкнутый контакт замыкается, а нормально разомкнутый — размыкается.

Примеры работы

Используя AC/DC-преобразователь соберём новую версию SMS-розетки. Для работы ниже приведённого скетча скачайте и установите новую версию библиотеки для GPRS Shield’a — AmperkaGPRS

Пример кода для Arduino

ac-dc_smart-power.ino
// библиотека для работы с GPRS устройством
#include <AmperkaGPRS.h>
 
// длина сообщения
#define MESSAGE_LENGTH 160
// текст сообщения о включении розетки
#define MESSAGE_ON  "On"
// текст сообщения о выключении розетки
#define MESSAGE_OFF  "Off"
// текст сообщения о состоянии розетки
#define MESSAGE_STATE  "State"
 
// пин, к которому подключено реле
#define RELAY_PIN 5
// пин, к которому подключена сенсорная кнопка
#define TOUCH_PIN 7
 
// текст сообщения
char messageMESSAGE_LENGTH;
// номер, с которого пришло сообщение
char number16;
// дата отправки сообщения
char datetime24;
// текущее состояние реле
bool stateRelay = false;
// состояние кнопки
boolean touchState = false;
 
// создаём объект класса GPRS и передаём в него объект Serial1 
GPRS gprs(Serial1);
// можно указать дополнительные параметры — пины PK и ST
// по умолчанию: PK = 2, ST = 3
// GPRS gprs(Serial1, 2, 3);
 
void setup()
{ 
  // настраиваем пин реле в режим выхода,
  pinMode(RELAY_PIN, OUTPUT);
  // подаём на пин реле «низкий уровень» (размыкаем реле)
  digitalWrite(RELAY_PIN, LOW);
  // открываем последовательный порт для мониторинга действий в программе
  Serial.begin(9600);
  // ждём пока не откроется монитор последовательного порта
  // для того, чтобы отследить все события в программе
  while (!Serial) {
  }
  Serial.print("Serial init OK\r\n");
  // открываем Serial-соединение с GPRS Shield
  Serial1.begin(9600);
  // включаем GPRS-шилд
  gprs.powerOn();
  // проверяем, есть ли связь с GPRS-устройством
  while (!gprs.begin()) {
    // если связи нет, ждём 1 секунду
    // и выводим сообщение об ошибке;
    // процесс повторяется в цикле,
    // пока не появится ответ от GPRS-устройства
    delay(1000);
    Serial.print("GPRS Init error\r\n");
  }
  // выводим сообщение об удачной инициализации GPRS Shield
  Serial.println("GPRS init success");
  Serial.println("Please send SMS message to me!");
}
 
void loop()
{
  // если пришло новое сообщение
  if (gprs.incomingSMS()) {
    // читаем его
    gprs.readSMS(message, number, datetime);
 
    // выводим номер, с которого пришло смс
    Serial.print("From number: ");
    Serial.println(number);
 
    // выводим дату, когда пришло смс
    Serial.print("Datetime: ");
    Serial.println(datetime);
 
    // выводим текст сообщения
    Serial.print("Recieved Message: ");
    Serial.println(message);
    // вызываем функцию изменения состояния реле
    // в зависимости от текста сообщения
    setRelay(number, message);
  }
 
  // считываем текущее состояние кнопки
  bool touchStateNow = digitalRead(TOUCH_PIN);
  // если кнопка была нажата только что
  if (!touchState && touchStateNow) {
    // считываем состояние кнопки
    touchStateNow = digitalRead(TOUCH_PIN);
    // считываем сигнал снова
    if (touchStateNow) {
      stateRelay = !stateRelay;
      digitalWrite(RELAY_PIN, stateRelay);
    }
  }
  // запоминаем последнее состояние кнопки для новой итерации
  touchState = touchStateNow;
}
 
void setRelay(char number, char message) {
  if (strcmp(message, MESSAGE_ON) == ) {
    // если сообщение — с текстом «On»,
    // выводим сообщение в Serial
    // и подаём на замыкаем реле
    Serial.println("OK! Power is On");
    digitalWrite(RELAY_PIN, HIGH);
    stateRelay = true;
    // на номер, с которого пришёл запрос,
    // отправляем смс с текстом о включении питания
    gprs.sendSMS(number, "Power is On");
  } else if (strcmp(message, MESSAGE_OFF) == ) {
    // если пришло сообщение с текстом «Off»,
    // выводим сообщение в Serial
    // и размыкаем реле
    Serial.println("OK! Power is Off");
    digitalWrite(RELAY_PIN, LOW);
    stateRelay = false;
    // на номер, с которого пришёл запрос
    // отправляем смс с текстом о выключении питания
    gprs.sendSMS(number, "Power is Off");
  } else if (strcmp(message, MESSAGE_STATE) == ) {
    // если пришло сообщение с текстом «State»,
    // отправляем сообщение с состоянием реле
    if (stateRelay) {
      Serial.println("State: Power is On");
      gprs.sendSMS(number, "Power is On");
    } else {
      Serial.println("State: Power is Off");
      gprs.sendSMS(number, "Power is Off");
    }
  } else {
    // если сообщение содержит неизвестный текст,
    // отправляем сообщение с текстом об ошибке
    Serial.println("Error... unknown command!");
    gprs.sendSMS(number, "Error...unknown command!");
  }
}

Переменный ток и его свойства

Переменный ток циклически меняет направление и силу, характеризуется следующими параметрами:

  1. частота. Число циклов (периодов) в секунду. Например, частота тока в сети составляет 50 Гц;
  2. амплитуда. Максимальное отклонение напряжения и силы тока от нуля. Так, сетевое напряжение 50 раз в секунду меняет значение от -311 В до 311 В;
  3. действующее значение. Это напряжение или сила эквивалентного постоянного тока, то есть такого, который вызывает в проводнике такое же тепловыделение, как и данный переменный. К действующему значению прибегают с целью упрощения расчетов: работать с постоянно изменяющимися величинами крайне неудобно. Например, если в формуле записать действительное значение переменного сетевого напряжения, изменяющегося от -311 В до 311 В по синусоидальному закону, получится уравнение с тригонометрическими функциями либо комплексными числами. Гораздо проще оперировать постоянным действующим значением в 220 В;
  4. форма. Сетевой ток, производимый механическими генераторами, имеет синусоидальную форму. На выходе инвертора она может быть остроугольной, ступенчатой и т. д.

Переменный ток уступает постоянному в следующем:

  1. он менее качественный. Так, сварной шов получается более прочным и надежным, если сварка осуществлялась постоянным током. Качественнее работает и электроника;
  2. при частоте в 50 Гц — более опасен. Нарушения в организме вызывает уже при силе в 50 мА, тогда как постоянный — при силе в 300 мА. Однако, с повышением частоты переменный ток становится уже не таким опасным. Так, выдающийся изобретатель Никола Тесла на публичных опытах пропускал через себя переменный ток большого напряжения (светилась зажатая в руке лампа), предварительно подняв его частоту до нескольких мегагерц;
  3. сопротивление проводников переменному току выше, чем постоянному. Разъяснение этому будет дано ниже.

Но есть у переменного тока и полезная особенность: создаваемое им магнитное поле также является переменным, а значит, оно способно наводить в проводниках ЭДС (закон электромагнитной индукции).

Переменный ток делает возможным работу таких устройств:

  1. трансформаторы. За счет повышения напряжения значительно сокращаются потери в линиях электропередач;
  2. индукционные нагреватели;
  3. дроссельные фильтры. Дроссель — катушка. Создаваемое ею переменное магнитное поле противодействует переменному току, то есть дроссель выступает в качестве сопротивления. От индуктивности катушки зависит частота тока, которому она сильнее всего противодействует. Эта особенность позволяет глушить дросселем высокочастотные помехи в сети.

Наличием переменного магнитного поля объясняется и упомянутое выше увеличение сопротивления проводника. В нем полем также наводится ЭДС, противодействующая данному переменному току. Эта ЭДС выше в центре проводника, где сконцентрированы силовые линии поля, соответственно, носители заряда вытесняются наружу (поверхностный или скин-эффект).

В итоге вместо всего сечения проводника ток пропускает только некоторая его часть, отчего и возрастает сопротивление. Еще отличие переменного тока от постоянного — способность протекать по цепи с последовательно включенным конденсатором. Для постоянного тока разрыв между обкладками непреодолим, тогда как переменный протекает почти свободно, заряжая обкладки то с одним, то с другим знаком.

Конденсатор, как и катушка, каждый раз накапливает энергию и затем возвращает ее в цепь, так что он тоже оказывает переменному току сопротивление, которое зависит от емкости конденсатора.

Схемы преобразователей

Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.

Вторая схема преобразователя переменного тока — это параллельное подключение на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.

Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.

Виды электрического тока в быту

Общие сведения о кабеле

Какой ток идет в розетке: характеристики бытового напряжения

Постоянный тoк

Также это явление можно описать более широко, опираясь на физические процессы, происходящие при этом. Наверняка каждый помнит понятия «плюса» и «минуса» из школьного курса физики, то есть понятия полюсов, заряженных разноименными зарядами. Для понимания процесса протекания нашего электротока можно представить обыкновенную пальчиковую батарейку и провод, который одним концом соединяется с положительным полюсом, а другим — с отрицательным (делать такое на практике крайне нежелательно из-за возможности испортить источник питания, а в случае с большими аккумуляторами даже получить ожоги и травмы).

Итак, как только второй конец провода будет замкнут, то есть присоединён к полюсу, в цепи сразу появится движение электронов. От отрицательного полюса, то есть полюса, на котором наблюдается избыток элементарных электрических зарядов, эти заряды станут перетекать к положительному полюсу, где их, наоборот, дефицит. Можно сказать, что это движение призвано сбалансировать количество зарядов с обеих сторон. Когда это произойдёт, электроны перестанут двигаться, то есть батарейка разрядится.

Как обозначается ток и закон Ома

Три этих характеристики легли в основу известнейшего в электротехнике и незаменимого почти при любых расчётах электрических схем закона, называемого законом Ома, в честь его создания. Кстати, единицы измерения сопротивления носят такое же имя — Омы.

Звучит этот закон следующим образом — сила тoка I прямо пропорциональна напряжению U и обратно пропорциональна сопротивлению R: I=U/R.

Для измерения всех вышеперечисленных величин существуют специальные приборы. Для тoка — амперметр, для напряжения — вольтметр, для сопротивления — вольтметр. Например, можно измерить силу тока, если подключить амперметр последовательно элементу, на котором мы и должны найти указанную характеристику. Существую приборы, комбинирующие в себе все вышеперечисленные средства измерения — мультиметры.

Как подобрать розетку

Полярные и неполярные конденсаторы – в чем отличие

Определение и свойства

Гальваническая батарея выдаёт стабильную разницу потенциалов на полюсах в течение длительного времени до момента завершения в ней химической реакции. Ток от подобного источника называют постоянным. Простое определение переменного тока, понятное для чайников и приемлемое для специалистов, можно построить от обратного: AC есть поток зарядов в проводнике, периодически меняющий свою величину и направление. В сетях энергоснабжения он регулярно изменяет амплитуду и полярность.

Эти изменения представляют собой бесконечные повторения последовательности идентичных циклов, формирующих на экране осциллографа синусоиду, в отличие от DC, который визуализируется как прямая.

Поскольку из определения переменного тока следует, что изменения параметров являются регулярными, переменное электричество обладает рядом свойств, связанных с качеством и формой его отражения на графике. Эти основные свойства можно представить следующим списком:

Частота. Одно из наиболее важных свойств любого регулярного сигнала. Определяет количество полных циклов за конкретный период. Измеряется в герцах (циклах в секунду). В Европе для сетей электроснабжения составляет 50 Гц, в США и Канаде — 60 Гц.

Период

Иногда важно знать количество времени, необходимое для завершения одного цикла электрического сигнала, а не числа циклов в секунду времени. Период — понятие логически обратное частоте, означающее длительность одного цикла в секунду.
Длина волны

Характеристика, похожая на период, но может быть измерена из любой части одного цикла к эквивалентной точке в следующем.
Амплитуда. В контексте электрического тока — это наибольшее значения АС относительно нейтрального. Математически амплитуда синусоиды есть значение этой синусоиды на пике. Однако если речь идёт о системах питания, то лучше обращаться к понятию эффективного тока. В качестве эквивалента используется количество работы, которую способен сделать постоянный ток при напряжении, равном амплитуде исследуемого переменного тока. Для синусоидальной волны эффективное напряжение составляет 0,707 от амплитуды.

В случае с АС наиболее важные свойства — частота и амплитуда, так как все виды оборудования разрабатываются с учётом соответствия этим параметрам в линии электропередачи. Период требует внимания при проектировании электронных источников питания.

Сечение кабеля

Ток как поток

Ток представляет собой расход электронов, указывающий на то, какое их количество движется по кабелю. Чем он выше, тем больше электронов проходит через проводник. Подобно тому, как большое количество воды требует более толстых труб, большие токи требуют более толстых кабелей.

Использование модели водяного контура позволяет объяснить и множество других терминов. Например, силовые генераторы можно представить как водяные насосы, а электрическую нагрузку – как водяную мельницу, для вращения которой требуется поток и давление воды. Даже электронные диоды можно рассматривать как водяные клапаны, которые позволяют воде течь только в одну сторону.

Группа получила название благодаря то ли швейной машинке, то ли пылесосу.

Касательно происхождения названия AC/DC (переменный ток/постоянный ток) существует две версии. Согласно самой распространенной, название группе предложила сестра Малькольма и Ангуса — Маргарет Янг. Дескать, она увидела надпись AC/DC на швейной машинке и ей показалось, что это крутое название для группы. Согласно же другой версии, буквы увидела на пылесосе жена Джорджа Янга — Сандра. В любом случае, такой вариант группе понравился. Он олицетворял их энергию и опасную наэлектризованность их музыки.

Первое официальное выступление AC/DC состоялось в канун Нового года в 1973 году. Принимал группу клуб Chequers в Сиднее. Банда тогда в основном играла каверы на Чака Берри, The Beatles, Free и другие группы. Приняли их очень тепло, особенно бурно толпа реагировала на неугомонного, скачущего по сцене Ангуса Янга.

AC/DC в 1973 году

Чем постоянный ток отличается от переменного и каков его путь от источника до потребителя?

Как обозначаются различные токи

По своим специфическим качествам электрический ток разделяется на два основных типа:

  • Постоянный ток. Обозначается прямой линией (—). Кроме того, используются символы DC – Direct Current, которые переводятся как постоянный ток.
  • Переменный ток. Известен под собственным обозначением в виде змейки (~) и символов АС, означающих Alternating Current.

Отличительной особенностью постоянного тока является его направленность. Он протекает лишь в одном определенном направлении, условно принимаемое от положительного контакта «+» к отрицательному контакту «-». От этого свойства и происходит наименование этого тока DC, который присутствует в солнечных панелях, всех типах сухих батареек и аккумуляторах, предназначенных для питания маломощных потребителей.
В некоторых технологических процессах, таких как дуговая электросварка, электролиз алюминия или электрифицированный железнодорожный транспорт, необходим постоянный ток DC с высоким значением силы. Чтобы его создать, необходимо выпрямить переменный или воспользоваться любым из генераторов постоянного тока.

Переменный ток AC, в отличие от постоянного, способен к изменению своего направления и величины. Существует параметр, известный как мгновенное значение переменного тока, определяемое в конкретный момент времени. Частота, с которой изменяется направление тока, составляет 50 Гц, то есть данная перемена происходит 50 раз в течение одной секунды.

Переменный ток AC может быть однофазным или трехфазным. В первом случае необходимо только два провода: основной и дополнительный, он же обратный. Именно по основному проводнику протекает электрический ток, а обратный считается нулевым проводом.

Трехфазное переменное напряжение вырабатывается соответствующим генератором тока AC. В этом процессе участвуют три обмотки, каждая из которых является своеобразной однофазной электрической цепью. Между собой они сдвинуты по фазе под углом 120 градусов. Благодаря данной системе электроэнергией могут быть обеспечены сразу три сети, независимые друг от друга. Для этого понадобится уже порядка шести проводов – трех прямых и трех обратных.

При необходимости дополнительные провода возможно соединить между собой и получить в итоге общий проводник, называемый нулевым или нейтральным. В этом случае проводники переменного тока на схемах обозначаются символами L1, L2, L3, а нулевой провод – буквой N.

Полярность при работе полуавтоматом

Подводя итоги

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий