Как отключить или включить протокол ipv6 в windows

В чём разница сканирования IPv6 и IPv4? Нужно ли дополнительно сканировать порты на IPv6?

IPv6 и IPv4 адреса одного удалённого хоста могут быть на одном сетевом интерфейсе или на разных. Даже если оба адреса присвоены одному сетевому интерфейсу, для этих адресов могут быть открыты разные порты! К примеру, далее я покажу, как настроить SSH работать только на IPv6 протоколе — в этом случае, если вы ограничитесь сканированием IPv4 протокола, то вы даже не узнаете о существовании службы SSH на целевом сервере! Аналогичное утверждение справедливо и для большинства других протоколов и сервисов, особенно не предназначенных для широкой публики: например, веб-сервер вряд ли будет настроен прослушивать только IPv6 адрес, поскольку это ограничивает доступ для большого количества посетителей, но «административные» сервисы, к которым должен иметь доступ только один человек или небольшая группа людей, например, SSH, Telnet, FTP и т. д. вполне могут быть настроены только для работы по IPv6 протоколу.

Почему затягивается полный переход на IPv6?

Сравнение с IPv4

Иногда утверждается, что новый протокол может обеспечить до 5·1028 адресов на каждого жителя Земли. Такое большое адресное пространство было введено ради иерархичности адресов (это упрощает маршрутизацию). Тем не менее, увеличенное пространство адресов сделает NAT необязательным. Классическое применение IPv6 (по сети /64 на абонента; используется только unicast-адресация) обеспечит возможность использования более 300 млн IP-адресов на каждого жителя Земли.

Из IPv6 убраны функции, усложняющие работу маршрутизаторов:

  • Маршрутизаторы больше не должны фрагментировать пакет, вместо этого пакет отбрасывается с ICMP-уведомлением о превышении MTU и указанием величины MTU следующего канала, в который этому пакету не удалось войти. В IPv4 размер MTU в ICMP-пакете не указывался и отправителю требовалось осуществлять подбор MTU техникой . Для лучшей работы протоколов, требовательных к потерям, минимальный MTU поднят до 1280 байт. Фрагментация поддерживается как опция (информация о фрагментации пакетов вынесена из основного заголовка в расширенные) и возможна только по инициативе передающей стороны.
  • Из IP-заголовка исключена контрольная сумма. С учётом того, что канальные (Ethernet) и транспортные (TCP и UDP) протоколы имеют свои контрольные суммы, ещё одна контрольная сумма на уровне IP воспринимается как излишняя. Кроме того, модификация поля hop limit (или TTL в IPv4) на каждом маршрутизаторе в IPv4 приводила к необходимости её постоянного перерасчёта.

Несмотря на больший по сравнению с предыдущей версией протокола размер адреса IPv6 (16 байтов вместо 4), заголовок пакета удлинился всего лишь вдвое: с 20 до 40 байт.

Улучшения IPv6 по сравнению с IPv4:

  • В сверхскоростных сетях возможна поддержка огромных пакетов (джамбограмм) — до 4 гигабайт;
  • Time to Live переименовано в Hop Limit;
  • Появились метки потоков и классы трафика;
  • Появилось многоадресное вещание.

Автоконфигурация (Stateless address autoconfiguration — SLAAC)

При инициализации сетевого интерфейса ему назначается локальный IPv6-адрес, состоящий из префикса fe80::/10 и идентификатора интерфейса, размещённого в младшей части адреса. В качестве идентификатора интерфейса часто используется 64-битный расширенный уникальный идентификатор , часто ассоциируемый с MAC-адресом. Локальный адрес действителен только в пределах сетевого сегмента канального уровня и используется для обмена информационными ICMPv6 пакетами.

Для настройки других адресов узел может запросить информацию о настройках сети у маршрутизаторов, отправив ICMPv6 сообщение «Router Solicitation» на групповой адрес маршрутизаторов. Маршрутизаторы, получившие это сообщение, отвечают ICMPv6 сообщением «Router Advertisement», в котором может содержаться информация о сетевом префиксе, адресе шлюза, адресах рекурсивных DNS серверов, MTU и множестве других параметров. Объединяя сетевой префикс и идентификатор интерфейса, узел получает новый адрес. Для защиты персональных данных идентификатор интерфейса может быть заменён на псевдослучайное число.

Для большего административного контроля может быть использован DHCPv6, позволяющий администратору маршрутизатора назначать узлу конкретный адрес.

Для провайдеров может использоваться функция делегирования префиксов клиенту, что позволяет клиенту просто переходить от провайдера к провайдеру, без изменения каких-либо настроек.

[править] Дайте потыкать

Ваш провайдер не поддерживает IPv6?

В технической поддержке вас попросили не задавать глупые вопросы? Неудивительно. Удивительно было бы, если бы всё было иначе! Чуть менее чем никто из компаний, раздающих интернеты в дома к обычным пользователям, не заморачиваются такими глупостями.

Вам сильно повезет, если вы житель некоторых районов СВАО Нерезиновска, так как там имеется провайдер (спойлер: ) со слегка фанатичным админом, который раздает ipv6 в каждый дом (вин в том, что тамошний шейпер не режет скорость на ipv6).

Но прогресс не остановить, и вот уже в нерезиновой ростелеком (он же онлайм) в своей сети раздаёт всем желающим ipv6-адреса. Правда, чтобы оно у тебя заработало, нужна либо поддержка DHCPv6 (линуксы умеют, андроиды нет, венда ХЗ), либо достаточно продвинутый роутер, умеющий в DHCPv6 и prefix delegation.

Но вы хотите ощутить себя в будущем?

Tunnel Broker

6to4

Teredo

VPN

Также можно воспользоваться dual-stack VPN (по единому туннелю предоставляются как IPv4-, так и IPv6-адрес):

Ура! Мы — часть нового интернета! И что теперь?

Структура IPv6 адреса

Ниже приведены примеры правильных IPv6 адресов:

::1
2a02:6b8:a::a
2a02:f680:1:1100::3d60
2604:a880:800:c1::2ae:d001
2001:db8:11a3:9d7:1f34:8a2e:7a0:765d

Они, мягко говоря, разные. Давайте разберёмся, как такое возможно.

Адреса IPv6 в полной форме отображаются как восемь четырёхзначных шестнадцатеричных чисел (то есть восемь групп по четыре символа), разделённых двоеточием. Пример адреса:

2001:0db8:11a3:09d7:1f34:8a2e:07a0:765d

Шестнадцатеричные числа записываются с помощью цифр от 0 до 9 и с помощью букв от a до f.

Полная запись может быть сокращена используя несколько методов нотации, к примеру, адрес 2001:0db8:0000:0000:0000:8a2e:0370:7334 равнозначен адресу 2001:db8::8a2e:370:7334.

Кстати, ведь IP адреса тоже поддерживают сокращённую запись, к примеру, следующая команда прекрасно будет работать:

ping 127.1

В результате будет выполнен пинг адреса 127.0.0.1, который в сокращённом виде представляет собой 127.1.

Для IP адресов группы цифр называют октетами (что на каком-то языке означает «восемь») поскольку каждая цифра в адресе содержит восемь бит информации, всего в IP четыре октета, то есть для адреса используется 32 бита. Кстати, именно поэтому число в каждом октете ограничено 255 — это соответствует количеству информации, которое могут хранить 8 бит, это 28, то есть числа от 0 до 255.

У IPv6 адресов в каждом сегменте 16 бит информации, на английском языке эти сегменты называют hextet или hexadectet. Всего 8 сегментов по 16 бит информации, получается, что для записи IPv6 адресов используется 8*16=128 бит.

Как уже было сказано выше, в IPv6 адресах числа в группах записываются в виде шестнадцатеричных чисел, а не в виде десятеричных, как в IP. Кстати, если запись была бы в виде десятичных чисел, то в каждом сегменте были бы числа от 0 до 65535 (это 216). Что касается шестнадцатеричных чисел, то для записи 16 бит информации нужно число длиной до четырёх символов, поэтому получается, то размер раздела составляет 4 символа, но может быть меньше, поскольку нули в начале числа писать необязательно. То есть если там должно быть число 00a1, то можно записать просто a1 — это первый способ сокращения записи IPv6 адресов.

Если в группе число равно 0 (то есть четыре нуля), то записывается один ноль.

Если групп с нулями несколько подряд, то независимо от количества нулей вся эта группа записывается как идущие два подряд двоеточия (::). Последнее сокращение можно использовать в одном IPv6 адресе только один раз, даже если имеется несколько групп с нулями. Если групп с нулями несколько, то заменяется только самая продолжительная из них. Если имеется две группы с нулями одинаковой длины, то заменяется та, которая идёт первой, то есть более левая.

Пример использования этих правил:

Начальный адрес: 2001:0db8:0000:0000:0000:ff00:0042:8329

После удаления всех начальных нулей в каждой группе: 2001:db8:0:0:0:ff00:42:8329

После пропуска последовательных сегментов с нулями: 2001:db8::ff00:42:8329

Петлевой адрес 0000:0000:0000:0000:0000:0000:0000:0001 используя правила сокращения можно сократить до ::1

Вернёмся к адресам из примеров выше:

2a02:6b8:a::a

Здесь пропущено несколько секций с последовательными нулями. Сколько именно? Это можно узнать исходя из следующего правила: всего должно быть 8 секций, а имеется только 4, значит, пропущено 4 секции, то есть в полном виде число должно выглядеть так:

2a02:6b8:a:0:0:0:0:a

Или даже так:

2a02:06b8:000a:0000:0000:0000:0000:000a

Следующий пример:

2a02:f680:1:1100::3d60

В этом адресе 5 сегментов, а должно быть 8, значит пропущено 3, запись адреса в полном виде:

2a02:f680:1:1100:0:0:0:3d60

Или вместе со всеми нулями:

2a02:f680:0001:1100:0000:0000:0000:3d60

2604:a880:800:c1::2ae:d001

В этом адресе 6 сегментов, а должно быть 8, следовательно, полная запись этого адреса:

2604:a880:800:c1:0:0:2ae:d001

2001:db8:11a3:9d7:1f34:8a2e:7a0:765d

В этом адресе 8 сегментов и нет двух двоеточий подряд — следовательно, это и есть полная запись адреса, разве что, опущены начальные нули:

2001:0db8:11a3:09d7:1f34:8a2e:07a0:765d

Надеюсь, эти простые упражнения помогли вам «наметать глаз» и научиться узнавать IPv6 адреса.

Глобальные IPv6

Что дает IPv6?

Документы, определяющие новый интернет-протокол организация Internet Engineering Task Force выпустила еще в середине 90-х, а официальный запуск работы протокола IPv6 на постоянной основе состоялся 6 июня 2012 года. Многие компании начали переходить на него и раньше, например Google — с 2008 г.

Номер «6» протокол получил потому, что имя IPv5 зарезервировали за экспериментальным протоколом реального времени, который так и не вышел «в серию». Но и не пропал совсем — многие заложенные в нем концепции можно найти в протоколе MLPS.

Благодаря 128-битной схеме адресации, заложенной в IPv6, количество доступных в нем сетевых адресов составляет 2 в 128 степени. Столь обширное адресное пространство делает ненужным применение NAT (адресов хватит всем) и упрощает маршрутизацию данных. Например, маршрутизаторы больше не должны фрагментировать пакеты, появилась возможность пересылки больших пакетов, размером до 4 Гбайт. Из IP-заголовка исключена контрольная сумма и т. д., поэтому несмотря на больший по сравнению с IPv4 размер адреса IPv6 (16 байтов вместо 4), заголовок пакета удлинился всего лишь вдвое: с 20 до 40 байт.

Что такое IPv4

Предпосылки к IPv6

Основной протокол, по которому в Интернете передадаются данные, называется IP (Internet Protocol). Всякие HTTP, ICQ и сервисы работают поверх него (с TCP или UDP в промежутке). IP умеет упаковывать данные в пакеты и передавать их между компьютерами. Понятно, желающим обменяться данными нужно как-то друг друга идентифицировать. Для этой цели используются IP-адреса.

А вот с адресами и начинаются проблемы. IP был придуман в 80-х годах XX века, когда никто и не предполагал, что доступ в Интернет через какие-то пятнадцать лет будет не то, что у каждой уважающей себя фирмы, а вовсе у каждого школьника. Поэтому адреса сделали длиной в четыре байта (от 0.0.0.0 до 255.255.255.255). Их 2^32 = 4294967296, казалось, что хватит всем. Прямо как 640 килобайт.

Но это еще не самый большой просчет. На ранних этапах развития сети адреса можно было получать не сколько тебе реально надо, а только блоками по 16777216, 65536 или 256 адресов. Если тебе надо 500 адресов, бери сразу 65536. Если надо 66000, бери 16 миллионов. Явно не самый эффективный расход адресного пространства.

Есть и еще один прикол: сеть 224.0.0.0/4 (268435456 адресов) выделили для многоадресной рассылки (через нее, в частности, работает IPTV), а адреса после нее зарезервировали для использования в будущем. Многие разработчики сетевого оборудования поставили аппаратный фильтр на эти зарезервированные адреса, и теперь если разрешить их использование, часть исторической инфраструктуры не сможет с ними работать.

Но до какого-то момента это все не имело значения, поскольку Интернет был только у военных и в университетах.

Когда число пользователей сети начало стремительно возрастать, стало ясно, что адресов не так уж и много. В первую очередь отказались от дурацкой классовой адресации (той самой выдачи блоками фиксированного размера) и сделали возможным выдавать адреса в минимально нужном количестве.
Потом и это перестало помогать, тогда подумали, что во имя спасения сети можно отказаться от уникальности адреса каждой машины и выдавать по одному уникальному адресу на сеть, чтобы все машины сети ходили в Интернет через него. Так появился NAT (Network Address Translation), который подменяет адрес источника у соединений вовне сети на адрес маршрутизатора. Для сетей за такими маршрутизаторами выделили всем теперь известные сети 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16.

Но это все временные меры, которые только помогли бы продержаться до внедрения нового протокола с большим адресным пространством.

IPv4 vs IPv6

IPv4 и IPv6 — это адреса, которые используются для идентификации компьютеров, подключенных к сети. Они одинаковы в принципе, но разные по своей работе. Тогда каковы различия между IPv4 и IPv6? Следующие описания помогут вам найти ответы.

Производительность

По сравнению с IPv4, IPv6 увеличивает IP-адрес с 32 до 128 бит для поддержки более высоких требований к адресу. Предполагается, что на поверхности Земли имеется 4×10^18 адресов IPv6 на квадратный метр, поэтому в обозримом будущем IP-адреса не закончатся. Кодирование адресов IPv6 использует иерархию похоже на CIDR, что упрощает маршрутизацию.

Формат заголовка IP

В формате заголовка IPv4 будут некоторые избыточные домены, которые были либо удалены, либо перечислены как расширенные заголовки в адресах IPv6. Хотя размер IP-заголовка IPv6-адреса в 4 раза больше, чем IPv4-адреса, заголовки IPv6 только в 2 раза больше IPv4. Это значительно снижает накладные расходы на обработку пакетов и пропускную способность заголовка.

Поддержка опций

Опции IPv4 помещаются в заголовок, а IPv6 — в отдельный и расширенный заголовок. Заголовок не будет обрабатываться, пока вы не укажете маршрутизатор, что значительно повышает производительность маршрутизации. Строгие требования к длине опций были смягчены IPv6 (до 40 байт для опций IPv4), и новые опции будут введены, когда вам нужно. Многие из новых функций IPV6 предоставляются такими опциями, как поддержка безопасности на уровне IP (IPSEC), jumbogram, мобильный IP и так далее.

Сетевая безопасность

Для IPv4 Internet Protocol Security (IPSec) является необязательной опцией или требует поддержки оплаты. А IPSec является обязательной опцией для IPv6. Кроме того, проверка идентичности и согласованность данных были добавлены в IPv6, что значительно повышает безопасность и конфиденциальность вашей сети.

Область применения

В настоящее время IPv6 успешно разворачивается в сетях уже много лет. Однако область применения IPv4 более обширна, чем IPv6. Так как эта ситуация возникает? Очевидно, что после развертывания IPv6 возникло много проблем, таких как плохая совместимость с существующей инфраструктурой, трудности перехода с IPv4 на IPv6 и т. д. Это также привело к медленной развитию IPv6. Возьмите Google в качестве примера, на следующем графике показан процент пользователей, которые обращаются к Google через IPv6 с 2009 по 2019 год. Из таблицы видно, что на ранних стадиях скорость развития IPv6 очень низкая. До сих пор доля пользователей обращается к Google через IPv6 все еще не так хороша как IPv4.

IPv6 vs IPv4 Specification

Различия IPv4 IPv6
Метод адресации Числовой адрес и его двоичные биты разделены точкой (.) Буквенно-цифровой адрес, двоичные биты которого разделены двоеточием (:). Он также содержит шестнадцатеричный код.
Типы адресов Одноадресная, широковещательная и многоадресная рассылка. Одноадресная, многоадресная и любая рассылка.
Адресная маска Используйте для назначенной сети из хост-части. Не используется.
Количество полей заголовка 12 8
Длина полей заголовка 20 40
Checksum Имеет поля Checksum. Нет поля Checksum.
Количество классов класс A — E. Неограниченное количество IP-адресов.
Конфигурация IP-адреса и маршруты должны быть назначены. Конфигурация является необязательной опцией в зависимости от требуемых функций.
VLSM Поддержка Не Поддержки
фрагментация Совершается путем отправки и пересылки маршрутов. Сделано отправителем.
Протокол маршрутной информации Поддерживается маршрутизируемым демоном. RIP не поддерживает IPv6. Он использует статические маршруты.
Конфигурация сети Вручная или с DHCP. Автонастройки.
SNMP SNMP — это протокол, используемый для управления системой. SNMP не поддерживает IPv6.
Мобильность & Совместимость Относительно ограниченные сетевые топологии, к которым перемещаются, ограничивают возможности мобильности и совместимости. IPv6 предлагает возможности взаимодействия и мобильности, встроенные в сетевые устройства.
DNS-записи Записи pointer (PTR), IN-ADDR.ARPA DNS домен Записи pointer (PTR), IP6.ARPA DNS домен
Разрешение IP-MAC Трансляция ARP Многоадресное обращение к соседям
Отображение Использует ARP (Address Resolution Protocol) для отображения на MAC-адреса. Использует NDP (протокол обнаружения соседей) для отображения на MAC-адреса.
Quality of Service (QoS) QoS позволяет запрашивать приоритет пакетов и пропускную способность для приложений TCP/IP. В настоящее время реализация IBMв QoS i не поддерживает IPv6.

Факторы исчерпания адресов

Технология IPv6


Рис. 1. Трансляция протоколов

При разработке IPv6 была предусмотрена возможность плавного перехода к новой версии, когда довольно значительное время будут сосуществовать островки Интернета, работающие по протоколу IPv6, и остальная часть Интернета, работающая по протоколу IPv4. Существует несколько подходов к организации взаимодействия узлов, использующих разные стеки TCP/IP.

Трансляция протоколов. Трансляция протоколов реализуется шлюзами, которые устанавливаются на границах сетей, использующих разные версии протокола IP. Согласование двух версий протокола IP происходит путем преобразования пакетов IPv4 в IPv6, и наоборот. Процесс преобразования включает, в частности, отображение адресов сетей и узлов, различным образом трактуемых в этих протоколах. Для упрощения преобразования адресов между версиями разработчики IPv6 предлагают использовать специальный подтип IРv6-адреса — IРv6-совместимый IРv6-адрес, который в младших 4-х байтах переносит IРv6-адрес, а в старших 12 байтах содержит нули . Это позволяет получать IPv4-адрес из IPv6-адреса простым отбрасыванием старших байтов.

Для решения обратной задачи — передачи пакетов IPv4 через части Интернета, работающие по протоколу IРv6, — предназначен IРv6-отображенный IРv6-адрес. Этот тип адреса также содержит в 4-х младших байтах IРv6-адрес, в старших 10-ти байтах — нули, а в 5-м и 6-м байтах IРv6-адреса — единицы, которые показывают, что узел поддерживает только версию 4 протокола IP.


Рис. 2. Обратная транасляция

Мультиплексирование стеков протоколов. Мультиплексирование стеков протоколов означает установку на взаимодействующих хостах сети обеих версий протокола IP. Обе версии стека протоколов должны быть развернуты также на разделяющих эти хосты маршрутизаторах. В том случае, когда IPv6-xoct отправляет сообщение IРv6-хосту, он использует стек IPv6 если тот же хост взаимодействует с IPv4-xoctom — стек IPv4. Маршрутизатор с установленными на нем двумя стеками называется маршрутизатором IPv4/IPv6, он способен обрабатывать трафики разных версий независимо друг от друга.

Инкапсуляция, или туннелирование. Инкапсуляция — это еще один метод решения задачи согласования сетей, использующих разные версии протокола IP. Инкапсуляция может быть применена, когда две сети одной версии протокола, например IPv4, необходимо соединить через транзитную сеть, работающие по другой версии, например IPv6 (рис 3) При этом пакеты IPv4 помещаются в пограничных устройствах (на рисунке роль согласующих устройств исполняют маршрутизаторы) в пакеты IPv6 и переносятся через «туннель», проложенный в IPv6-ceть. Такой способ имеет недостаток заключающийся в том, что узлы IPv4-ceTeft не имеют возможности взаимодействовать с узлами транзитной IPv6-cera. Аналогичным образом метод туннелирования может использоваться для переноса пакетов IPv6 через сеть маршрутизаторов IPv4.


Рис. 3. Инкапсуляция

Переход от версии IPv4 к версии IPv6 только начинается. Сегодня уже существуют фрагменты Интернета, в которых маршрутизаторы поддерживают обе версии протокола. Эти фрагменты объединяются между собой через Интернет, образуя так называемую магистраль Вопе.

Как узнать, у меня IPv6 адрес или нет? Как узнать свой IPv6 адрес

Как использовать адреса IPv6 в URL

Каждому человеку, кто хотя бы раз настраивал роутер знакома ситуация, когда IP-адрес вводится в строке адреса браузера. Другой вариант, когда это приходится делать — в случае если кто-то запустил на компьютере веб-сервер без привязки доменного имени и Вам по какой-либо причине надо на него зайти. В случае IPv4 делается Вы просто пишете IP, например 192.168.0.1, в строке адреса и нажимаете кнопку Enter. Браузер преобразует IP-адрес в http, получаем такую строчку: http://192.168.0.1 По-умолчанию для Веб-сервера используется TCP-порт 80. Но иногда в настройках используют альтернативные порты, например 8080. В этом случае строка адреса будет выглядеть так: http://192.168.0.1:8080, т.е. порт указывается через двоеточие -:- после адреса.
Но что же делать в случае, когда используется IPv6, ведь там все числа через двоеточие и браузер будет думать что это порт.
Так вот в случае IPv6 IP-адрес в адресной строке браузера закрывается квадратными скобками. Выглядит это так:http:///
Если надо указать ещё и порт, то так:http://:8080/

История создания

IETF назначила новому протоколу версию 6, так как версия 5 была ранее назначена экспериментальному протоколу, предназначенному для передачи видео и аудио.

Исчерпание IPv4 адресов

Основная статья: Исчерпание IPv4-адресов

Оценки времени полного исчерпания IPv4 адресов различались в 2000-х. Так, в 2003 году директор APNIC Пол Уилсон (англ. Paul Wilson) заявил, что, основываясь на темпах развёртывания сети Интернет того времени, свободного адресного пространства хватит на одно—два десятилетия. В сентябре 2005 года Cisco Systems предположила, что пула доступных адресов хватит на 4—5 лет.

3 февраля 2011 агентство IANA распределило последние 5 блоков /8 IPv4 региональным интернет-регистраторам.
На этот момент ожидалось, что общий запас свободных блоков адресов у региональных интернет-регистраторов (RIR) закончится в течение срока от полугода (APNIC) до пяти лет (AfriNIC).

По состоянию на сентябрь 2015 года об исчерпании общего запаса свободных блоков IPv4 адресов и ограничениях на выдачу новых диапазонов адресов объявили все региональные регистраторы, кроме AfriNIC; ARIN объявил о полном исчерпании свободных IPv4 адресов, а для остальных регистраторов этот момент прогнозируется начиная с 2017 года. Выделение IPv4 адресов в Европе, Азии и Латинской Америке (регистраторы APNIC, RIPE NCC и LACNIC) продолжается блоками /22 (по 1024 адреса)

Тестирование протокола

8 июня 2011 года состоялся Международный день IPv6 — мероприятие по тестированию готовности мирового интернет-сообщества к переходу с IPv4 на IPv6, в рамках которого участвующие в акции компании добавили к своим сайтам IPv6-записи на один день. Тестирование прошло успешно, накопленные данные будут проанализированы и учтены при последующем внедрении протокола и для составления рекомендаций.

Внедрение протокола

Перевод на IPv6 начал осуществляться внутри с 2008 года.
Тестирование IPv6 признано успешным. 6 июня 2012 года состоялся Всемирный запуск IPv6. Интернет-провайдеры включат IPv6 как минимум для 1 % своих пользователей (уже подписались AT&T, Comcast, Free Telecom, Internode, KDDI, Time Warner Cable, XS4ALL). Производители сетевого оборудования активируют IPv6 в качестве настроек по умолчанию в маршрутизаторах (Cisco, D-Link). Веб-компании включат IPv6 на своих основных сайтах (Google, Facebook, Microsoft Bing, Yahoo), а некоторые переводят на IPv6 также корпоративные сети.
В спецификации стандарта мобильных сетей LTE указана обязательная поддержка протокола IPv6.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий