Бит

Содержание

Производные единицы [ править | править код ]

Определения и свойства

Для трёх состояний светофора необходимо ⌈2log⁡3⌉={\displaystyle \lceil \,\,\!^{2}\log 3\,\,\rceil =}⌈1,5849⌉=2{\displaystyle \lceil 1,5849\rceil =2} бита информации 00 — красный01 — жёлтый10 — зелёный

В зависимости от области применения (математика, электроника, цифровая техника, вычислительная техника, теория информации и др.), бит может определяться следующими способами:

1. В математике:
1.1. Бит — это один разряд двоичного кода (двоичная цифра) может принимать только два взаимоисключающих значения: «да» или «нет», «1» или «0», «включено» или «выключено», и т. п.

1.2. Соответствует одному числовому разряду в двоичной системе счисления, принимающему значение «0» или «1» («ложь» или «истина»).

2. В электронике, в цифровой технике и в вычислительной технике:

2.1. Одному биту (одному двоичному разряду) соответствует один двоичный триггер (триггер, имеющий два взаимоисключающих возможных устойчивых состояния) или один разряд двоичной флэш-памяти.

Для перехода от количества возможных состояний (возможных значений) к количеству бит можно воспользоваться формулой:

log2⁡(m{\displaystyle \log _{2}(m} ){\displaystyle )} =n{\displaystyle =n} .

Следовательно, для одного двоичного разряда (триггера)):

1{\displaystyle 1}=log2⁡(2{\displaystyle =\log _{2}(2} ){\displaystyle )}.

Для перехода от количества бит к количеству возможных состояний (возможных значений) можно воспользоваться формулой:

m{\displaystyle m} =2n{\displaystyle =2^{n}}.

2.2. Формула Хартли

I=log2⁡N=nlog2⁡m,{\displaystyle I=\log _{2}N=n\log _{2}m,} где:

I{\displaystyle I} — количество информации, бит;N=mn{\displaystyle N=m^{n}} — возможное количество различных сообщений (количество возможных состояний n-разрядного регистра), шт;m{\displaystyle m} — количество букв в алфавите (количество возможных состояний одного разряда (триггера) регистра, в двоичной системе равно 2 («0» и «1»)), шт;n{\displaystyle n} — количество букв в сообщении (количество разрядов (триггеров) в регистре), шт.

Применяется для измерения объёмов запоминающих устройств и объёмов цифровых данных.

3. В теории информации:
3.1. Бит — это базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равновероятных исхода; см. информационная энтропия. Это тождественно количеству информации в ответе на вопрос, допускающий ответ «да» или «нет» и никакого другого (то есть такое количество информации, которое позволяет однозначно ответить на поставленный вопрос).

3.2. Один бит равен количеству информации, получаемой в результате осуществления одного из двух равновероятных событий.

3.3. Бит — это двоичный логарифм вероятности равновероятных событий или сумма произведений вероятности на двоичный логарифм вероятности при равновероятных событиях; см. информационная энтропия.

Применяется для измерения информационной энтропии. Отличается от бита для измерения объёмов запоминающих устройств и объёмов цифровых данных, так как большой по объёму массив данных может иметь очень малую информационную энтропию, то есть энтропийно может быть почти пустым.

Обозначение [ править | править код ]

Информационный объём текстового сообщения

Как найти, к примеру, информационный объём сообщения «Информатика – главная наука современности».
Для этого нужно сосчитать общее количество символов в сообщении (заключено в кавычках), учитывая пробелы между словами (пробел в компьютере тоже символ). Итого, получаем 41 символов или 41 байт.

Предлагаем узнать, сколько информации находится в книге из 100 страниц, если на каждой странице умещается 50 строк, а на каждой строке — 60 символов.
100⋅50⋅60=300 000 символов, что составляет 300 000 байт. Переведём всё в килобайты: 300 000 байт /1024=292,97 Кб. В мегабайтах это будет уже 292,97 Кб /1024=0,29 Мб.

Кодирование информации и мера ее измерения

За единицу измерения информации принят бит, с которым достаточно легко работать, ведь он может вмещать значение 0 или 1. Как компьютер осуществляет кодирование обычных десятичных чисел в двоичный код? Рассмотрим небольшой пример, который объяснит принцип кодирования информации компьютерной техникой.

Допустим, у нас есть число в привычной системе исчисления – 233. Чтобы перевести его в бинарный вид, необходимо делить на 2 до того момента, пока оно не станет меньше самого делителя (в нашем случае – 2).

  1. Начинаем деление: 233/2=116. Остаток записываем отдельно, это и будут составляющие ответного бинарного кода. В нашем случае это 1.
  2. Вторым действием будет такое: 116/2=58. Остаток от деления – 0 – опять записываем отдельно.
  3. 58/2=29 без остатка. Не забываем записывать оставшийся 0, ведь, утеряв всего один элемент, вы получите уже совершенно другую величину. Этот код далее будет храниться на винчестере компьютера и являть собой биты – минимальные единицы измерения информации в информатике. 8-классники уже способны справиться с переводом чисел из десятичного типа исчисления в двоичный, и наоборот.
  4. 29/2=14 с остатком 1. Его и записываем отдельно к уже полученным двоичным цифрам.
  5. 14/2=7. Остаток от деления равен 0.
  6. Еще немного, и бинарный код будет готов. 7/2=3 с остатком 1, который и записываем в будущий ответ двоичного кода.
  7. 3/2=1 с остатком 1. Отсюда записываем в ответ две единицы. Одну – как остаток, другую – как последнее оставшееся число, которое уже не делится на 2.

Необходимо запомнить, что ответ записывается в обратном порядке. Первое получившееся бинарное число из первого действия будет последней цифрой, из второго – предпоследней, и так далее. Наш итоговый ответ – 11101001.

Такое бинарное число записывается в памяти компьютера и хранится в этом виде до тех пор, пока пользователь не захочет посмотреть на него с экрана монитора. Бит, байт, мегабайт, гигабайт – единицы измерения информации в информатике. Именно в таких величинах и хранятся бинарные данные в компьютере.

Другие единицы измерения информации

После того, как мы разобрались в том, что 1 байт состоит из 8 бит, стоит изучить следующие «старшие» единицы измерения. Они образуются приставками к байту из СИ (система интернационал),

  • Кило,
  • Мега,
  • Гига,
  • Тера.

Сложность здесь состоит в том, что при переходе от одной приставки к другой необходимо использовать кратность 1024, а не 1000, принятой в физических единицах измерения. Соответственно в 1 килобайте содержится 1024 байта, а чтобы перевести мегабайты в байты потребуется дважды перемножить объем информации в Мбайт на 1024. Отвечая на вопрос, чему равен 1 гигабайт в байтах, потребуется трижды произвести деление объема байтов на 1024.

Что такое бит?

Часто под битом понимают единицу измерения информации. Такое определение нельзя назвать точным, потому что само понятие информации достаточно размыто. Если говорить более корректно, то бит — это буква компьютерного алфавита. Слово «бит» происходит от английского выражения «binary digit», что дословно означает «двоичная цифра».

Алфавит компьютеров прост и состоит всего из двух символов: 1 и 0 (наличие или отсутствие сигнала, истина или ложь). Этого набора вполне достаточно, чтобы логически описать все, что угодно. Третье состояние, под которым понимают молчание компьютера (прекращение передачи сигналов), является мифом.

Сама по себе буква не несет в себе никакой ценности с точки зрения информации: глядя на единицу или ноль, невозможно понять даже то, к какого рода данным это значение относится. И фото, и тексты, и программы в конечном счете состоят из единиц и нулей. Поэтому бит неудобен в качестве самостоятельной единицы. Следовательно, биты необходимо объединять для того, чтобы кодировать с их помощью полезную информацию.

Десятичные дроби

Примечание: хаки с float могут не работать на Ардуино!

Разбить float в массив бит (unsigned uint32_t)

#include <stdint.h>
typedef union {float flt; uint32_t bits} lens_t;
uint32_t f2i(float x) {
  return ((lens_t) {.flt = x}).bits;
}

Вернуть массив бит обратно в float

float i2f(uint32_t x) {
  return ((lens_t) {.bits = x}).flt;
}

Быстрый обратный квадратный корень

return i2f(0x5f3759df - f2i(x) / 2);

Быстрый nый корень из целого числа

float root(float x, int n) {
#DEFINE MAN_MASK 0x7fffff
#DEFINE EXP_MASK 0x7f800000
#DEFINE EXP_BIAS 0x3f800000
  uint32_t bits = f2i(x);
  uint32_t man = bits & MAN_MASK;
  uint32_t exp = (bits & EXP_MASK) - EXP_BIAS;
  return i2f((man + man / n) | ((EXP_BIAS + exp / n) & EXP_MASK));
}

Быстрая степень

return i2f((1 - exp) * (0x3f800000 - 0x5c416) + f2i(x) * exp)

Быстрый натуральный логарифм

#DEFINE EPSILON 1.1920928955078125e-07
#DEFINE LOG2 0.6931471805599453
return (f2i(x) - (0x3f800000 - 0x66774)) * EPSILON * LOG2

Быстрая экспонента

return i2f(0x3f800000 + (uint32_t)(x * (0x800000 + 0x38aa22)))

Чему равно «кило»?

Основная статья: Двоичные приставки

Долгое время разнице между множителями 1000 и 1024 старались не придавать большого значения. Во избежание недоразумений следует чётко понимать различие между:

  • двоичными кратными единицами, обозначаемыми согласно ГОСТ 8.417-2002 как «Кбайт», «Мбайт», «Гбайт» и т. д. (два в степенях кратных десяти);
  • единицами килобайт, мегабайт, гигабайт и т. д., понимаемыми как научные термины (десять в степенях, кратных трём),

эти единицы по определению равны, соответственно, 103, 106, 109 байтам и т. д.

В качестве терминов для «Кбайт», «Мбайт», «Гбайт» и т. д. МЭК предлагает «кибибайт», «мебибайт», «гибибайт» и т. д., однако эти термины критикуются за непроизносимость и не встречаются в устной речи.

В различных областях информатики предпочтения в употреблении десятичных и двоичных единиц тоже различны. Причём, хотя со времени стандартизации терминологии и обозначений прошло уже несколько лет, далеко не везде стремятся прояснить точное значение используемых единиц.

В английском языке для «киби»=1024=210 иногда используют прописную букву K, дабы подчеркнуть отличие от обозначаемой строчной буквой приставки СИ кило. Однако, такое обозначение не опирается на авторитетный стандарт, в отличие от российского ГОСТа касательно «Кбайт».

Сколько битов в Байте

Что такое машинное слово?

Другие системы счисления

“Трюки” с битами

Производные единицы [ править | править код ]

Измерения в байтах
ГОСТ 8.417—2002 Приставки СИ Приставки МЭК
Название Обозначение Степень Название Степень Название Символ Степень
байт Б 10 0 10 0 байт B Б 2 0
килобайт Кбайт 10 3 кило- 10 3 кибибайт KiB КиБ 2 10
мегабайт Мбайт 10 6 мега- 10 6 мебибайт MiB МиБ 2 20
гигабайт Гбайт 10 9 гига- 10 9 гибибайт GiB ГиБ 2 30
терабайт Тбайт 10 12 тера- 10 12 тебибайт TiB ТиБ 2 40
петабайт Пбайт 10 15 пета- 10 15 пебибайт PiB ПиБ 2 50
эксабайт Эбайт 10 18 экса- 10 18 эксбибайт EiB ЭиБ 2 60
зеттабайт Збайт 10 21 зетта- 10 21 зебибайт ZiB ЗиБ 2 70
йоттабайт Ибайт 10 24 йотта- 10 24 йобибайт YiB ЙиБ 2 80

Кратные и дольные приставки для образования производных единиц для байта применяются не как обычно. Уменьшительные приставки не используются совсем, а единицы измерения информации, меньшие, чем байт, называются специальными словами — ниббл (тетрада, полубайт) и бит. Увеличительные приставки кратны либо 1024 = 2 10 , либо 1000 = 10 3 : 1 кибибайт равен 1024 байтам , 1 мебибайт — 1024 кибибайтам или 1024×1024 = 1 048 576 байтам и т. д. для гиби-, теби- и пебибайтов. В свою очередь 1 килобайт равен 1000 байтам , 1 мегабайт — 1000 килобайтам или 1000×1000 = 1 000 000 байтам и т. д. для гига-, тера- и петабайт. Разница между ёмкостями (объёмами), выраженными в кило = 10 3 = 1000 и выраженными в киби = 2 10 = 1024 , возрастает с ростом веса приставки. МЭК рекомендует использовать двоичные приставки — кибибайт, мебибайт, йобибайт и т. п.

Иногда десятичные приставки используются и в прямом смысле, например, при указании ёмкости жёстких дисков: у них гигабайт (гибибайт) может обозначать не 1 073 741 824 = 1024 3 байтов , а миллион килобайтов (кибибайтов), то есть 1 024 000 000 байтов , а то и просто миллиард байтов.

Что такое байт. Сколько бит в байте.

Вы, наверное, слыхали про азбуку Морзе, где комбинации длинных и коротких сигналов (точек и тире) расшифровывались в слова. А если взять комбинацию из 8 цифр, каждая из которых может быть единицей или нулем, то получим 256 комбинаций, чего хватит для отображения и цифр и букв, причем и не одного алфавита. И вот эти 8 бит называются байтом . Таким образом в байте 8 бит . Это необязательно держать в голове или учить наизусть, можно работать на компьютере и без таких знаний, но Вам все же придется оценивать размер информации. Мерять информацию битами и даже байтами сложновато, потому как объёмы информации гораздо больше.

Что такое килобайт, мегабайт и гигабайт. Как перевести килобайты в мегабайты и гигабайты в мегабайты.

В десятичной системе исчисления мы используем приставки, чтобы обозначить большое число. Например: приставка кило- означает, что указанное число надо умножить на тысячу. 1 килограмм = 1000 грамм. Но килобайт — это не тысяча байт , а 2 в степени 10, то есть 1024 байт, что не совсем корректно. К этому сложновато сперва привыкнуть, даже есть такой анекдот:

— Программист думает, что килограмм колбасы — это 1024 грамма, а обычный человек думает, что килобайт — это 1000 байт.

Приставка мега- предполагает миллион, но мегабайт — это опять же 1024 килобайт или 1048576 байт. Как видите, мегабайт больше килобайта. Гигабайт — это 1024 мегабайт = 1048576 килобайт = 1073741824 байт. Терабайт — это 1024 гигабайт соответственно.

Какая из единиц измерения информации больше — бит или байт ?

Бит, наименьший объем информации. В одной байте, восемь бит.

Работаю у интернет-провайдера. Некоторые люди, плохо разбираются в мегабитах и мегабайтах. Возьмем к примеру тарифный план со скоростью десять мегабит. Для того чтобы посчитать скорость загрузки, нужно знать что в одном мегабайте 1024 килобайт. В итоге получается сумма в 10240 килобайт и эту сумму следует разделить на восемь, скорость загрузки на данном тарифном плане составляет 1280 килобайт в секунду

1,3 мегабайта в секунду.

Дело в окончаниях, и не следует забывать главное правило информатики, что в одном байте, содержится восемь бит.

Что такое байт

Наверняка каждый из нас слышал про азбуку Морзе, которая до сих пор активно используется в некоторых сферах деятельности. В её основе положено использование двух типов сигналов: точек и тире. Их комбинации можно расшифровать в буквы, слова и целые предложения.

Что же касается компьютерной системы шифра, то она состоит из 8 цифр, ведь из них можно получить сразу 256 комбинаций, чего хватит для кодирования цифр и букв нескольких алфавитов. Именно эти восемь цифр называют байтами.


Другими словами, в одном байте содержится 8 бит. Эту информацию нет необходимости знать в обязательном порядке, однако её понимание позволит досконально оценить размеры информации на том или ином носителе.

Подробнее узнать о трансформации привычных нам знаков в двоичный код можно с помощью калькулятора, который является базовой программой операционной системы Виндоус. Вам нужно будет лишь запустить его и перейти в режим «Программист».

После этого Вы сможете ввести любое число и нажать на кнопку «Bin». В результате отобразится кодовый шифр для указанного числа. К примеру, для 100 это будет «1100100».

Чтобы понять, каким двоичным кодом отображаются буквы и слова, можно воспользоваться таблицей символов, которая также присутствует в каждой операционной системе Windows. Для этого вам нужно будет зайти в меню Пуск, после чего открыть стандартные программы и перейти в раздел «Служебные».

Там выберете символьную таблицу. Перед Вами откроется окно с различными знаками. При этом, Вы также можете выбрать стиль набора. Далее выделите один символ, и увидите его код в служебной строке…

Почему информация шифруется в двоичной форме?

Макросы для манипуляций с битами

Бит информации

Работа с данными

Информация — это всё то, что мы можем видеть, слышать, или же читать. При этом, объёмы этой самой информации постоянно растут и хранить, а также систематизировать её становится всё сложнее. Сам же компьютер обрабатывает информационные блоки с помощью устройств, расположенных внутри системного блока. Между тем или иным узлом информация передаётся за счёт наличия кабелей.

Даже с помощью таких внешних устройств, как клавиатура или мышка, Вы всё равно вносите дополнительную информацию в свой компьютер, которую необходимо будет обрабатывать и в дальнейшем хранить. В быту данные, важные для нас, хранятся в записной книжке, блокноте или ежедневнике.

С компьютером всё обстоит иначе. Он вынужден фиксировать любую информацию и для хранения использует специальные носители, включая жёсткий диск. Несмотря на его компактные размеры, на самом деле в устройстве может храниться невероятное количество данных, включая миллионы документов, тысячи аудиозаписей и видеороликов.

При этом, воспринимать информацию компьютер способен не так, как наш мозг, а в кодовом эквиваленте «0» или «1». На этом и базируется двоичная система, в которой участвуют всего две цифры. Именно одна из них называется битом, который является самым маленьким носителем компьютерной информации. При этом, само устройство может как хранить биты, так и передавать их.

Перевод единиц измерения информации

Для представления килобайтов в байтах необходимо число килобайтов умножить на 1024. Например, умножая и округляя до большего целого: 2,4 Кбайт = 2,4 * 1024 = 2458 байтов.

Для того, чтобы Кбайты перевести в биты, числовое значение килобайтов умножают на 1024, а затем на 8. Например 2,4 Кбайт = 2,4 * 1024 * 8 = 19661 бит.

Для сравнения чисел в разных единицах, следует их привести к единому виду. Например, что больше 1,3 Гбайта или 1300 Мбайтов? Переведем гигабайты в мегабайты: 1,3(Гбайта) = 1,3 * 1024 = 1331,2 (Мбайта). Это больше чем 1300 Мбайтов.

Что мы узнали?

Количество информации выражают в битах и байтах. Для обозначения больших объемов информации вместе со словом байт используются префиксы кило, мега, гига, тера, пета, экса, зетта, йотта. При переводе единиц измерения следует брать в качестве множителя число 1024.

Объем различных типов файлов

Уверен, многих интересует, как узнать, сколько же информации способен вместить именно Ваш компьютер, а точнее винчестер или жесткий диск. Кстати почитайте перед этим про локальные диски. Я Вас научу самому простому способу это сделать.

Откройте «Мой компьютер». Видите свои локальные диски? Единицы измерения информации, использующиеся для показа количества информации на локальных дисках у всех, как правило, одинаковы. Это гигабайты. Что такое гигабайт мы уже знаем, так что перейдем к подсчету свободного и занятого места на жестком диске. Под каждым диском есть специальное уведомление, где показано, сколько свободного места осталось и сколько всего информации диск может вместить.

Теперь приведу некоторые примеры файлов и их возможные объемы. Это поможет Вам ориентироваться в том, что Вы сможете записать на локальный диск, а что туда уже не влезет. Заметьте, один локальный диск НЕ МОЖЕТ задействовать место другого. Это значит, что файл целиком и полностью должен находиться на одном локальном диске. Есть, правда, специальные программы, позволяющие работать с локальными дисками, но об этом мы будем говорить в другой раз, так как тема сложная и достаточно объемная.

Кстати, различные типы файлов вы можете найти на своем рабочем столе.

Любите слушать музыку? Тогда Вам просто необходимо знать, что один музыкальный трек занимает до нескольких мегабайт объема памяти (в среднем, от 3 до 7). Попробуйте самостоятельно подсчитать, сколько таких мелодий вместит Ваш локальный диск, если на нем есть 1 гигабайт свободного места.

А как на счет того, чтобы посмотреть хороший фильм? Их объем, в зависимости от качества записи и длины трека, может занимать от 700 мегабайт до 1,5 гигабайта.

Для общего развития добавлю, что современные полноформатные игры могут занимать до нескольких десятков гигабайт. Не всякий локальный диск может выдержать такое.

Единицы измерения информации путать не стоит

Четко обращайте внимание на то, сколько места есть и сколько необходимо записать

Современные жесткие диски могут содержать информацию объемом несколько терабайт. Что очень актуально, ведь качество игр, фильмов и даже музыки растет, что требует постоянного увеличения их информационного объема.

Теперь Вы знаете, что такое байты какие бывают производные от него. Вам известны рамки объема Ваших локальных дисков, а значит, Вы стали лучше понимать работу компьютера.

Кодирование текста.

При
вводе в компьютер каждая буква кодируется
определенным числом, а при выводе на
внешние устройства (экран или печать)
для восприятия человеком по этим числам
строятся изображения букв. Соответствие
между набором букв и числами называется
кодировкой символов.

Алфавитный
подход основан на том, что всякое
сообщение можно закодировать с помощью
конечной последовательности символов
некоторого алфавита. Множество символов,
используемых при записи текста, называется
алфавитом.
Количество символов в алфавите называется
его мощностью.

Существует
двоичный алфавит, который содержит
только 2 символа, и его мощность равна
двум.

Для
представления текстовой информации в
компьютере чаще всего используется
алфавит мощностью 256 символов. Один
символ из такого алфавита несет 8 бит
информации, т.к. 28
= 256.

8
бит составляют один байт, следовательно,
двоичный код каждого символа занимает
1 байт памяти ЭВМ. Традиционно для
кодирования одного символа используется
количество информации, равное 1 байту
(8 битам). Все символы такого алфавита
пронумерованы от 0 до 255, а каждому номеру
соответствует 8-разрядный двоичный код
от 00000000 до 11111111.

Для
разных типов ЭВМ и операционных систем
используются различные таблицы кодировки,
отличающиеся порядком размещения
символов алфавита в кодовой таблице.
Международным стандартом на персональных
компьютерах является таблица кодировки
ASCII. Сообщения, записанные с помощью
символов ASCII, используют алфавит из 256
символов.

Кроме
того, в настоящее время существует еще
ряд кодовых таблиц для русских букв. К
ним относится таблица кодировки КОИ8,
использующая алфавит из 256 символов.

Широкое
распространение получил новый
международный стандарт UNICODE, который
отводит на каждый символ не один байт,
а два, поэтому с его помощью можно
закодировать не 256 символов, а 216
= 65536 различных символов.

Информативность
последовательности символов не зависит
от содержания сообщения.

Чтобы
определить объем информации в сообщении
при алфавитном подходе, нужно
последовательно решить задачи:

  1. Определить
    количество информации (i) в одном символе
    по формуле
    2i = N, где N – мощность
    алфавита,

  2. Определить
    количество символов в сообщении,
    учитывая знаки препинания и пробелы
    (m),

  3. Вычислить
    объем информации по формуле: V = i * m.

Пример.
Закодировано текстовое сообщение
«Десять букв», определить его информационный
объем по системе ASCII и UNICODE.

Решение.
Сообщение содержит 11 символов. Один
символ из алфавита ASCII несет 8 бит
информации, поэтому информационный
объем по системе ASCII составит 11*8 бит =
88 бита = 11 байт.

Один
символ из алфавита UNICODE несет 16 бит
информации или 2 байта, поэтому
информационный объем по системе UNICODE
составит 11*16 бит = 176 бит = 22 байта.

Для
двоичного сообщения той же длины
информационный объем составляет 11 бит,
т.к. N
= 2, i
= 1 бит, m
= 11, V
= 11 бит.

Обозначение [ править | править код ]

Использование русской прописной буквы «Б» для обозначения байта регламентирует Межгосударственный (СНГ) стандарт ГОСТ 8.417-2002 («Единицы величин») в «Приложении А» и Постановление Правительства РФ от 31 октября 2009 г. № 879. Кроме того, констатируется традиция использования приставок СИ вместе с наименованием «байт» для указания множителей, являющихся степенями двойки ( 1 Кбайт = 1024 байт , 1 Мбайт = 1024 Кбайт , 1 Гбайт = 1024 Мбайт и т. д., причём вместо строчной «к» используется прописная «К»), и упоминается, что подобное использование приставок СИ не является корректным. По ГОСТ IEC 60027-2-2015 строчная «к» соответствует 1000 и «Ки» — 1024, так 1 КиБ = 1024 Б, 1 кБ = 1000 Б.

Следует учитывать, что в ГОСТ 8.417, кроме «бит», для бита нет однобуквенного обозначения, поэтому использование записи вроде «Мб» как синонима для «Мбит» не соответствует этому стандарту. Но в некоторых документах используется сокращение b для bit: IEEE 1541-2002, IEEE Std 260.1-2004, в нижнем регистре: ГОСТ Р МЭК 80000-13—2016, ГОСТ IEC 60027-2-2015.

В международном стандарте МЭК IEC 60027-2 от 2005 года для применения в электротехнической и электронной областях рекомендуются обозначения:

  • bit — для бита;
  • o, B — для октета, байта. Причём о — единственное указанное обозначение во французском языке.

Единицы измерения информации в информатике: таблица величин

Компьютеры, флеш-накопители и другие устройства запоминания и обработки информации отличаются между собой объемом памяти, который обычно исчисляется в гигабайтах. Необходимо посмотреть на основную таблицу величин, чтобы увидеть сопоставимость одной единицы измерения информации в информатике в порядке возрастания со второй.

Таблица №1. Перевод единиц измерения в минимальную величину исчисления информации
Название величины объема информации Степень перевода в минимальную величину Символьное обозначение
Байт 10 б
Килобайт 101 Кб
Мегабайт

102

Мб
Гигабайт 103 Гб
Терабайт 104 Тб

История [ править | править код ]

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий